

LA Techniques Ltd

LA19-01-03 PULSE PATTERN GENERATOR

The LA19-01-03 is a pseudo random pulse pattern generator capable of operation up to 3 Gb/s. It provides a fast rise time and low pulse distortion. The unit can accommodate two internal clock generators and supports an external clock input. It provides a clean pulse output suitable for applications such as optical communications, fast pulse amplifiers and high speed logic circuits development. Remote control is via an IEEE488 interface.

- Operation to 3 Gb/s
- 45 ps rise and fall times
- Low skew differential outputs
- 2 v_{pp} output amplitude (differential)
- GPIB Interface
- Low cost

Electrical Specification

 $(t_{amb} = 25^{\circ}C)$

Parameter	Units	Min	Тур	Max
Operating frequency	0 === 0.0			
Internal clock 1 (factory set) ¹	GHz	0.15	_	3.0
Internal clock 2 (factory set) ¹	GHz	0.15	_	3.0
External clock	GHz	0.15	_	3.0
External clock		****		
Input level (0.4 – 2.9 GHz)	V_{pp}	0.5	_	2.5
Input level (<0.4, >2.9 GHz)	V _{pp}	1.4	_	2.5
Internal clock	. рр			
Stability	ppm/ ^O C	_	0.3	1
SSB phase noise (100 kHz offset)	dBc/Hz	_	-95	_
Pseudo random binary sequence			, ,	
Pattern length ² (2 ⁿ -1)	n	_	7,23	_
Mark ratio	-	_	1/1	_
Data output (Data and Data bar) ^{3,4,5}				
Single ended amplitude	V _{pp}	0.9	1.0	1.1
Rise / fall time (20% to 80%)	ps	-	45	60
Skew	ps	_	-	10
Jitter(using internal clock) ⁷	ps	_	20	30
Overshoot	%	_	5	10
dc Bias injection (BNC connector)				
dc current	mA	-100	-	100
dc voltage	V	-15	-	+15
dc resistance	Ω	15	18	25
3 dB bandwidth ⁵	kHz	5	10	-
Clock output ³				
Amplitude	V _{pp}	0.6	1.0	1.5
Rise/fall time (20% to 80%)	ps	-	120	200
Clock/16 output ⁴				
Amplitude	V _{pp}	0.8	1.0	1.5
Rise/fall time (20% to 80%)	ps	_	120	200
Pattern sync output ^{3,6}				
Amplitude	V _{pp}	0.8	1.2	1.5
Rise/fall time (20% to 80%)	ps OC	-	120	200
Operating temperature range	C	+10	-	+35
Power	AC 100-250v (50-60Hz), < 50VA			
Remote Control	GPIB, IEEE488.2 compatible			
Weight	4.7 kg			
Notes				

Notes

- Internal clock(s) are fixed frequency set during manufacture
 User selectable patterns, 2⁷-1 and 2²³-1 in accordance with CCITT
 All data and clock inputs and outputs have SMA connectors
- 4. Data outputs are non return to zero (NRZ)
- 5. 50Ω Load connected to data output
 6. Pattern sync only on 2⁷-1 pattern length
- Measured on Agilent 86100A, clock output used to synchronise measurement

The LA19-01-03 provides a pseudo random binary sequence (PRBS) synchronised to either an internal or external clock. It provides three types of synchronisation output signals, Clock, Clock/16, and Pattern. The clock is a square wave with a typical amplitude of 1.0 v_{pp} . The clock/16 is derived from the clock signal by means of low noise dividers. The typical amplitude of this is 1 v_{pp} . The pattern synchronisation output produces an output synchronised to the length of the PRBS sequence selected. This allows, for example, the individual data bits to be observed on a sampling oscilloscope. It is available on the 2^7 -1 pattern length setting.

2.5 Gb/s, 2²³ Pattern Eye Diagram

The data output provides differential outputs, each at 1 v_{pp} with fast transitions of 45 ps. The output level can be boosted externally using one of LA Techniques' wideband amplifiers. For example, the LA32-04-03 will provide an output of $7 v_{pp}$ into 50Ω with a resulting rise time of 50 ps.

A dc offset can be added to each of the data outputs by means of the internal bias-Ts. These can handle a maximum dc voltage of ± 15 v at ± 100 mA. At high bias currents, a voltage drop will occur due to the internal dc resistance of the bias-T. This is typically 18Ω .

2.5 Gb/s Output Using Pattern Synchronisation

Dimensions in mm Manufactu

Manufactured in the UK Specification subject to change without notification

ontact

Ordering information:

LA19-01-03 Pattern generator

-319-

Clock1 xx GHz (xx is frequency in the range 0.15 to 3.0 GHz)

Data

Clock Enable Data

O Clock/16

Symc Symc

Clock Pattern Ext Clock

Ct. | Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. | Ct. |

Ct. |

LA19-01-03 Pattern Generator Option:

Clock2 xx GHz (xx is frequency in the range 0.15 to 3.0 GHz)

LA Techniques Ltd
Chancerygate Business Centre, Unit 5
Red Lion Road Surrey KT6 7RA, UK
http://www.latechniques.com