

LA19-13-02
3 GHz Vector Network Analyser

Programming Manual
Issue 2.0, March 2007

Document history
Issue and date
1.0, July 06 Introduced
2.0, March 07 Added: Non-insertable DUT calibration mode and

impedance conversion facility.
Modified: SetKit, MeasCal, GetInfo
Added: SetSysZo, ZConversion

Copyright ©2007 LA Techniques Ltd

LA Techniques Ltd

The Works, Station Road Tel: 01372 466040
Claygate, Surrey KT10 9DH Fax: 01372 466688
VAT no. GB 689 4720 79 E-mail: info@latechniques.com
Registered in England No: 3356289 Registered Office as above Web site: www.latechniques.com

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 2

Blank Page

CONTENTS

1. Introduction... 5
2. Availability and Installation... 5
3. RS232 Interface... 6
4. Command Summary... 7
5. Communications ... 8

5.1 Discover instrument .. 8
5.2 Reset serial communications error flag... 8

6. Calibration... 9
6.1 Create kit (displays a dialogue form).. 9
6.2 Create kit ... 10
6.3 Set frequency plan... 11
6.4 Calibrate and set frequency plan (displays a dialogue form)........................... 11
6.5 Calibrate (measure calibration standard) .. 12
6.6 Apply calibration .. 13
6.7 P1dB Calibration and Measurement (display a dialogue form)....................... 13
6.8 AM-PM Calibration and Measurement (displays a dialogue form) 14
6.9 P1dB Calibration... 14
6.10 AM-PM Calibration .. 15
6.11 Set quiescent point of Receiver... 15

7. Measurements ... 17
7.1 Measure one sweep (S11, S21, S11+S21, or ‘All’ using current calibration) . 17
7.2 Measure P1dB... 17
7.3 Measure AM-PM .. 18

8. Signal Processing... 19
8.1 Set enhancement parameters... 19
8.2 Set Reference Plane .. 20
8.3 Save measurement to memory .. 20
8.4 Apply memory Math... 21
8.5 Set System Impedance .. 22
8.6 Impedance Conversion Utility .. 22

9. Get Processed Data ... 24
9.1 Get data ... 24
9.2 Get memory .. 24
9.3 Find data point .. 25
9.4 Set Pass / Fail Limits... 26
9.5 Pass / Fail Measurement ... 27

10. Get Info .. 28
10.1 Get instrument / cal information ... 28

11. Data Storage .. 30
11.1 Save cal kit .. 30
11.2 Save measurement .. 30
11.3 Save status and calibration.. 30

12. Data Retrieval.. 32
12.1 Load status and calibration ... 32

13. Miscellaneous... 33
13.1 Initialise all variables .. 33
13.2 Set to signal generator mode (display a dialogue form) 33
13.3 Set to signal generator mode... 33

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 4

13.4 Get DLL program version... 34
14. Diagnostics ... 35

14.1 Run diagnostics tests (display form)... 35
15. Examples.. 36

15.1 Visual Basic 6 ... 37
15.1.1 Program Form ... 37
15.1.2 Loading the DLL library... 37
15.1.3 Discovering the instrument and loading a calibration kit 38
15.1.4 Performing a calibration ... 38
15.1.5 Performing a measurement ... 39
15.1.6 Getting measured data... 40

15.2 Agilent’s VEE... 41
15.2.1 S-Parameter Example (VNASparmExample.vee) 41
15.2.2 Time Domain example (VNATimeDomainExample.vee) 48
15.2.3 Signal generator example (VNASigGenExample.vee)............................. 50

15.3 National Instruments LabVIEW ... 52
15.3.1 LabVIEW example ... 52

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 5

1. Introduction

This manual describes the functionality of the DLL software (ActiveX library)
available to support the LA19-13-02 Vector Network Analyser. The main
intention of the software is to provide support for the control of the VNA from
specialist test and measurement programs like Agilent’s VEE and National
Instrument’s LabView. Errors accepted.

Labview and VEE are registered trademarks of National Instruments Inc., and
Agilent Inc., respectively.

2. Availability and Installation

The library (VNAControl2.dll) has been shipped with the main user interface
control program (VNA_UI2) starting from release version 1.4 (July 2006).
Installation of the VNA_UI2 program will automatically install and register
VNAControl2.dll on the host PC.

It is recommended that the user always first installs VNA_UI2 since this will
install and register all the necessary libraries required. In the case where the user
is looking to update the VNAControl2.dll, the following procedure may be
followed.

To manually register the DLL file, use the following steps.

(i) Copy the file VNAControl2.dll to a directory of choice (e.g. ../system32)
(ii) From the Start > Run type command to bring up a DOS window
(iii) Navigate to the directory of choice
(iv) Register the VNAControl2 file by typing Regsvr32 VNAControl2.dll

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 6

3. RS232 Interface

Control of the LA19-13-02 is through its serial port. The settings are as follows.

Baud Rate: 115.2 kb/s
of bits: 8
of stop bits: 1
Parity: off
MSComm InBuffer: 25000
MSComm OutBuffer: 25000

 Valid ports: 1 to 16
 Handshake RTS / CTS

Fig. 2.1. RS232 Null Modem Cable and Connector wiring

Control using the USB port is also possible by using the optional USB to RS232 adaptor.
This approach is recommended, particularly with older PCs where otherwise high speed
data communications through the serial port may prove unreliable.

Whenever the USB adaptor is used, ensure that the allocated port lies in the range 1 to 16.
This can be verified / modified as follows.

Control Panel > Performance and Maintenance
System > Hardware tab
Device Manager > Expand Ports

If the USB serial port number is greater than 16 (e.g. COM18) then proceed as follows:

Right click on USB Serial Port (select Properties)
Click on Port Settings tab
Click on Advanced
Select port number less than 17 from the box at the top ('Port number')
Click OK and exit

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 7

4. Command Summary

Section Command Description Input Output
6.6 AppCal Function, apply the calibration CalType String: “OK” or “Error”
8.4 AppMemMath Function, apply vector math to the current

measurement
Para, Func String: “OK” or “Error”

13.4 DLLVer Function, query the current DLL version None String: <dll version>
6.9 DoP1dBCal Function, perform a P1dB calibration Loss1,Loss2,Ftest String: “OK” or “Error”
6.10 DoAMPMCal Function, perform an AM to PM calibration Loss1,Loss2,Ftest String: “OK” or “Error”
7.3 DoP1dBMeas Function, measure P1dB None String: <P1dB value> or

<error message>
7.4 DoAMPMMeas Function, measure AM to PM Ptest String: <AM PM value>

or <error message>
5.1 FND Function, find instrument None Integer, serial port
9.3 FndPt Function, read data (marker function) Freq, Para,

MeasType, Func
String: <freq, pk or min
value, bandwidth, freq
index> or “Error”

9.1 GetData Function, read measured data Para, MeasType, Pnt String: <freq,value> or
“Error”

10.1 GetInfo Function, read instrument status Para String: <value>, “Error”
9.2 GetMem Function, read memory data Para, MeasType, Pnt String:<freq, value> or

“Error”
13.1 InitVar Function, initialise all variables None String: “OK”
14.1 InsDiag Function, perform diagnostic tests None None (displays window)
12.1 LoadCal Function, load a calibration and status from

disk
FileName or “?” String: “OK” or “Error”

6.5 MeasCal Function, measure a calibration standard CalType, Standard String: “OK” or “Error”
7.2 Measure Function, perform a single sweep measurement Para String: “OK” or “Error”
5.2 ResetErr Routine, resets communication error flag None None
11.3 SaveCal Function, save the current calibration and status

to disk
FileName or “?” String: “OK” or “Error”

11.1 SaveKit Function, calibration kit [Note: Thru data only
saved if kit is on port 1]

FileName, Port String: “OK” or “Error”

8.3 SaveToMem Function, save measured data to memory Para String: “OK” or “Error”
6.8 SelectAMPM Routine, measure AM to PM None None (displays window)
6.2 SelectCal Routine, calibrate the instrument “?” or FileName String: “OK” or “Error”

(displays window)
6.1 SelectKit Routine, create, load or save a calibration kit “?” or FileName,

Port
String: “OK” or “Error”
(displays window)

6.7 SelectP1dB Routine, measure P1dB None None (displays window)
11.2 SelectSaveMeas Routine, save measured data to disk None None (displays window)
13.2 SelectSigGen Routine, set up the instrument as a synthesised

signal generator
None None (displays window)

8.1 SetEnhance Function, set measurement enhancement Para, k String: “OK” or “Error”
6.3 SetFreqPlan Function, set the frequency plan Fstart, Fstep, I, P String: “OK” or “Error”
6.2 SetKit Function, create a calibration kit Name, Ksex, Koff,

CF0,CF1,CF3,Port,
MData, FileName1,
Tdata, FileName2

String: “OK” or “Error”

9.4 SetLimits Function, set pass / fail limits Segment, Para,
FreqLow, FreqHigh,
ValMin,ValMax>

String: “Error”, “OK” or
data string

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 8

Command Summary (continued)

Section Command Description Input Output
13.3 SetSigGen Function set up the instrument as a

synthesised signal generator
Freq, P String: “OK” or “Error”

8.2 SetRef Function, set measurement reference plane Para, k String: “OK”, “Error” or
“No cal”

6.11 SetRXQ Function, set quiescent point of the receiver None String: “OK” or “Error”
9.5 TestLimits Function, used to do a pass / fail test on the

current measured data against set pass / fail
limits

<Para>, <FreqLow>,
<FreqHigh>,< MeasType >

String: “Error”, “Pass”,
or string data with failed
data

8.6 ZConversion Function, converts a set of s-parameters
from one base impedance to another

<ZoOld>,<ZoNew>,
<S11r>,<S11i>,<S21r>,
<S21i>,<S12r>,<S12i>,
<S22r>,<S22i>

String: data string or
“Error”

8.5 SetSysZo Function, used to set the system impedance
to a value other than 50Ω

<SysZo>, <ExMatch> String: “OK” or “Error”

5. Communications

5.1 Discover instrument

Internal DLL declaration:
Public Function FND() As Integer

Typical usage:
This function is used to find the instrument connected to the PC.
<variable> = FND

Action:
Searches all available serial ports to find the instrument. If the instrument is found,
factory data is read from the instrument’s EEPROM. This takes in the region of 12
seconds to complete. The instruments dc offset voltage is read at this time too. No
parameter is passed in the call.

Parameter passed Description Value
None

Returns:
Serial port number where the instrument is detected (1 to 16) or 0 if no instrument is
found.

Return values Type Executed correctly Error
<0 to 16> Integer <1 to 16> <0>

5.2 Reset serial communications error flag

Internal DLL declaration:
Public Sub ResetErr()

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 9

Typical usage:
This routine is used to reset the error flag.

Action:
Resets the serial communications error flag. No parameters are passed in the call.

Parameter passed Description Value
None

Returns:
Nothing

6. Calibration

Note! The dc offset voltage dcOff must be read before any calibration is done.
Further, it is strongly advised that a call is made (GetInfo(“dcOff”)) every one or
two minutes interval to ensure optimum performance.

6.1 Create kit (displays a dialogue form)

Internal DLL declaration:
Public Function SelectKit(ByVal FileName As String, ByVal port As Integer) as String

Typical usage:
This routine is used to create or load a calibration kit.
<variable> = SelectKit(<FileName>, <port>)

Action:
If the user passes a “?” instead of a file name, then this function displays a
dialogue window which allows the user to select (load from disk) or create and
save a calibration kit. On the other hand, if a valid full path file name is passed (of
the calibration kit to be loaded) together with either “1” for port 1, or “2” for port
2, then the kit is loaded and applied without a dialogue form.

Parameter passed Description Comments
Filename, Port or “?” Full path file name (of calibration

kit), test port (‘1’ or ‘2’) or “?” string
If a “?” is passed a dialogue
form is displayed

Returns:

Return values Type Executed correctly Error
“OK” or “Error” String “OK” “Error”

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 10

6.2 Create kit

Internal DLL declaration:
Public Function SetKit(ByVal name As String, ByVal Ksex As String, ByVal
Koff As Variant, ByVal CF0 As Variant, ByVal CF1 As Variant, ByVal CF2 As
Variant, ByVal CF3 As Variant, ByVal port As Integer, ByVal MData As String,
ByVal FileName1 As String, ByVal Tdata as String, ByVal FileName2 as String)
As String

Typical usage:
<variable> = SetKit(<name>, <Ksex>, <Koff>,<CF0>, <CF1>,<CF 2>, <CF3>, <port>,
<MData>, <FileName1>, <Tdata>, <FileName2>)

Action:
Creates a calibration kit using the parameters passed. See table below for the type
and format of data required. Note that Thru data is only loaded if the kit is to be
associated with Port 2 of the instrument.

Parameter passed Description Value Unit
Name Cal kit name
Ksex Cal kit connector sex “m” or “f”
Koff Cal kit’s reference plane metre
CF0 Open standard capacitance coefficient Farad
CF1 Open standard capacitance coefficient Farad
CF2 Open standard capacitance coefficient Farad
CF3 Open standard capacitance coefficient
Port Port (1 or 2) to which kit applies 1 or 2
MData Flag indicates if load data is available “True” or “False”
FileName1 Path and file name of Load data file
TData Flag indicates if Thru data is available “True” or “False”
FileName2 Path and file name of Thru data file

Returns:

Return values Type Executed correctly Error
“OK” or “Error” String “OK” “Error”

Important: Through adaptor data is only loaded and saved when the kit is associated
with Port 1 of the instrument. A kit with Thru data may be loaded to Port 2 but the Thru
data will be ignored, therefore, if the kit is subsequently re-saved the Thru data will be
lost.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 11

6.3 Set frequency plan

Internal DLL declaration:
Public Function SetFreqPlan(ByVal Fstart As Variant, ByVal Fstep As Variant,
ByVal I As Variant, ByVal P As Variant) As String

Typical usage:
This routine is used to set the frequency plan of the instrument. Typically, the format
used is as follows:

<variable> = SetFreqPlan(<start frequency>, <frequency step>, <# of points>,<power
level>)

Action:
Sets the frequency sweep.

Parameter passed Units Min Value Max Value Step size
Start Frequency MHz 3 3079.995
Frequency Step MHz 0.0001 (100Hz) 60.33
Number of points (I) 51,101, 201, 401, 801
Power Level dBm -20 0 1

The sweep is set by passing the start frequency and step size. The step size is
calculated by taking the start frequency from the stop frequency and dividing by
the (number of points – 1). The stop frequency must not be greater than 3080MHz

Fstep = (Fstop - Fstart)/(Npoints – 1) Fstop <= 3080

Returns:

Return values Type Executed correctly Error
“OK” or “Error” String “OK” “Error”

Note: If a valid calibration exists, setting a new frequency plan (different from that used
during calibration) will cause a new set of (interpolated) error terms to be generated so
that a new calibration need not be carried out. Note that this process will delete any
measurements saved to memory. Note further that in order to obtain the best instrument
capability a new calibration should be performed.

6.4 Calibrate and set frequency plan

(displays a dialogue form)

Internal DLL declaration:
Public Function SelectCal(ByVal FileName as string) as String

Typical usage:
This routine is used to set the frequency plan and calibrate the instrument.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 12

Action:
If a “?” string is passed then this function displays a dialogue form which allows
the user to set the frequency plan (start, stop and number of frequency points) and
complete calibration of the instrument. If a valid full path file name holding a
calibration is passed, then the calibration will be loaded without displaying a
form.

Parameter passed Description Value
Filename or “?” Full path file name (of

calibration file) or “?”
If a “?” is passed a dialogue
form is displayed

Returns:

Return values Type Executed correctly Error
“OK” or “Error” String “OK” “Error”

Note: If a valid calibration exists, setting a new frequency plan (different from that used
during calibration) only will cause a new set of (interpolated) error terms to be generated
so that a new calibration need not be carried out. Note that this process will delete any
measurements saved to memory. Note further that in order to obtain the best instrument
capability a new calibration should be performed whenever the sweep parameters change.

6.5 Calibrate (measure calibration standard)

Internal DLL declaration:
Public Function MeasCal(ByVal CalType As Variant, ByVal Standard As Variant) As String

Typical Usage:
<variable> = MeasCal(<CalType>, <Standard>)

Action:
Measures a calibration standard (used during the calibration procedure). The parameters
passed are described below.

Parameter passed Description Value
CalType Calibration type “S11”, “S21”, “S11+S21”, “All”, “Alln”
Standard Calibration standard “Open”, “Short”, “Load”, “Thru” or “Isolation”

Note! Calibration types are as follows:
 S11: 1 port correction
 S21: frequency response (with optional isolation) correction
 S11+S21: 1 port correction, with frequency response and isolation correction and
 source match correction
 All: Full 12-term correction for insertable device (2 cal kits needed)
 Alln: Full 12-term correction for non-insertable device (only 1 cal kit)

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 13

Returns:

Return values Type Executed correctly Not executed
“OK” or “Error” String “OK” “Error”

6.6 Apply calibration

Internal DLL declaration:
Public Function AppCal(ByVal CalType As Variant) As String

Typical Usage:
<variable> = AppCal(<CalType >)

Action:
Applies the calibration (used after all calibration standards, i.e. short, open and load) have
been measured). The parameter passed is described in the table below.

Parameter passed Description Value
CalType Calibration type “S11”, “S21”, “S11+S21”, “All”,

“Alln”

Returns:

Return values Type Executed correctly Not executed
“OK” or “Error” String “OK” “Error”

Note! Only use with the MeasCal commands. Not after using SelectCal or LoadCal

6.7 P1dB Calibration and Measurement

(display a dialogue form)

Internal DLL declaration:
Public Sub SelectP1dB()

Typical Usage:
This function is used to perform P1dB calibration and measurements. Typically
implemented as follows:

Call SelectP1dB or
SelectP1dB

Action:
A dialogue form is displayed that allows the user to carry out interactively P1dB
measurements. No parameters are passed.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 14

Parameter passed Description Value
None

Returns:
Nothing

6.8 AM-PM Calibration and Measurement

(displays a dialogue form)

Internal DLL declaration:
Public Sub SelectAMPM()

Typical Usage:
Used to perform an AM to PM calibration. Typically implemented as follows:

Call SelectAMPM or
SelectAMPM

Action:
A dialogue form is displayed that allows the user to carry out interactively AM to
PM measurements. No parameters are passed.

Parameter passed Description Value
None

Returns:
Nothing

6.9 P1dB Calibration

Internal DLL declaration:
Public Function DoP1dBCal(ByVal Loss1 As Variant, ByVal Loss2 As Variant, ByVal
Ftest As Variant) As String

Typical Usage:
Used to perform a P1dB calibration. Typically implement as follows:
<variable> = DoP1dBCal(<Loss1>, <Loss2>, <Ftest>)

Action:
Performs a P1dB calibration. This is used prior to carrying out a P1dB measurement. No
dialogue form is displayed. The parameters passed are described in the table below.

Note! P1dB Calibration should be carried out without the input or output attenuators in place.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 15

Parameter passed Description Value Unit
Loss1 Input attenuation / loss dB
Loss2 Output attenuation / loss dB
Ftest Frequency at which the Cal is done 3 to 3080 MHz

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error” String “OK” “Error”

6.10 AM-PM Calibration

Internal DLL declaration:
Public Function DoAMPMCal(ByVal Loss1 As Variant, ByVal Loss2 As Variant, ByVal
Ftest As Variant) As String

Typical Usage:
Used to perform an AM to PM calibration. Typically implemented as follows:
<variable> = DoAMPMCal(<Loss1>, <Loss2>, <Ftest>)

Action:
Performs an AM to PM calibration at the specified frequency. The parameters passed are
described in the table below.

Note! AM-PM Calibration should be carried out without the input or output attenuators in place.

Parameter passed Description Value Unit
Loss1 Input attenuation / loss dB
Loss2 Output attenuation / loss dB
Ftest Frequency at which the Cal is done 3 to 3080 MHz

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error” String “OK” “Error”

6.11 Set quiescent point of Receiver

Internal DLL declaration:
Public Function SetRXQ() As String

Typical Usage:

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 16

<variable> = SetRXQ

Action:
This function optimises the quiescent point of the instrument’s receiver. This function is not
normally necessary unless the ultimate capability of the instrument is required. If used, it
must be called immediately before performing a measurement sweep. No parameters are
passed.

Parameter passed Description Value
None

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error” String “OK” “Error”

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 17

7. Measurements

Note! The dc offset voltage (dcOff) must be read before any calibration or
measurement is done. It is strongly advised that a call is made (GetInfo(“dcOff”)) at
every one or two minutes interval to ensure optimum performance.

7.1 Measure one sweep (S11, S21, S11+S21, or ‘All’ using current

calibration)

Internal DLL declaration:
Public Function Measure(ByVal Para As Variant) As String

Typical Usage:
Executes a measurement sweep. It is typically called as follows:

<variable> = Measure(<para>)

Action:
Performs a single measurement sweep using the current calibration. The parameter passed is
described in the table below.

Parameter passed Description Value
Para Measurements to be made “S11”, “S21”, “S11+S21”, “All”

Note! If the current calibration is not for the parameter passed, then an error will be
returned. For example, if “S21” is passed, then the current calibration must be either
an S21, S11+S21 or ‘All’ calibration. Similarly, if “S12” is passed, then the current
calibration must be an ‘All’ or ‘Alln’ calibration.

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error” String “OK” “Error”

7.2 Measure P1dB

Internal DLL declaration:
Public Function DoP1dBMeas() As String

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 18

Typical Usage:
Used to perform a P1dB measurement.

<variable> = DoP1dBMeas

Action:
Performs a P1dB measurement. Before this function is used, a P1dB calibration must be
carried out at which time the losses at the input and output of the device under test can be
set. No parameters are passed.

Parameter passed Description Value
None

Returns:

Return values Type Executed correctly Not executed correctly
P1dB value, “No cal” or

“Error”
String <P1dB Value> “Error” or “No cal”

7.3 Measure AM-PM

Internal DLL declaration:
Public Function DoAMPMMeas(ByVal Ptest As Variant) As String

Typical Usage:
Used to carry out an AM to PM coefficient test.

<variable> = DoAMPMMeas(<Ptest>)

Action:
Performs a AM to PM measurement. Before using this function, an AM to PM calibration
must be done at which time the losses at the input and output of the device under test can
be set. A single parameter is passed as described in the table below.

Parameter passed Description Value Unit

Ptest Power level at which measurement reported -20 to 0 dBm

Returns:

Return values Type Unit Executed correctly Not executed correctly
AM to PM value, “No

cal” or “Error”
String deg/dB <AM to PM value> “Error” or “No cal”

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 19

8. Signal Processing

8.1 Set enhancement parameters

Internal DLL declaration:
Public Function SetEnhance(ByVal Para As Variant, ByVal k As Variant) As String

Typical Usage:
Used to set measurement enhancements.
<variable> = SetEnhance(<Para>, <k>)

Action:
This function is used to set the various measurement enhancements available. Two parameters are
passed (“Para” and “k”) as described in the table below.

Note! Frequency Sweep (SetFreqPlan or SelectCal, etc) must be set before this command is
used otherwise an error is generated. The set value applies at the next sweep.

Para Description k Units
“Aver” Sets number of averages 1 to 255
“Smoo” Sets the smoothing 0 to 10 %
“Dwel” Sets dwell time for each measurement 0.5 or 2.5 ms
“Powr” Sets power level -20 to 0 dBm (1dB steps)
“Dem1” Sets de-embedding network for port 1 File path and name
“Dem2” Sets de-embedding network for port 1 File path and name
“ApplyDem” Turns de-embedding on or off “ON” or “OFF”
“TDTime” Sets the start time and stop time for time

domain measurements
*See following table ns

“TDP” *See following table

Para Argument k Examples Notes
“TDTime” <start time>, <stop time> in ns “-5, 166”

“0, 50”
Start time = -5 ns (min)
Stop time = 332 ns (max)
Maximum span = 166 ns

“TDP” <dc termination type>, <resistance
value (if applicable)>, <window type>,
<window order>

“auto,rect”
“res,50,kaiserb,6”

‘Res’ value only needed if
termination type is ‘Res’.
‘window order’ only needed if
‘window type’ is ‘kaiserb’
Possible terminations: “auto”,
“short”, “open”, or “res”.
Possible window types: “rect”,
“kaiserb”, or “raisedcos”

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 20

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error” String “OK” “Error”

8.2 Set Reference Plane

Internal DLL declaration:
Public Function SetRef(ByVal Para As Variant, ByVal k As Variant) As String

Typical Usage:
This function is used to set the measurement reference.
<variable> = SetRef(<Para>, <k>)

Action:
Used to set the reference plane of subsequent measurements. A reference plane for each of the
four s-parameters can be specified. Two parameters are passed as described in the table below.

Para Description k Units
“S11”, “S21”, “S12”
or “S22”

Measurement parameter to which the
reference plane will apply

<value in the range -10 to +10>,
“auto” or “?”

metres

The value of k passed to the function must lie within the range -10 to +10 metres. If k is assigned
“auto” then the reference plane will automatically be assigned as follows.

Measurement Parameter ‘Automatic’ reference plane value assigned
S11 or S22 Distance to a short or an open circuit
S21 or S12 Distance required to produce a mean phase of 0o

Note! Set the reference plane to 0 before using the ‘auto’ facility.

Returns:

Return values Type Executed correctly Not executed correctly
“OK”, “No Cal” or

“Error”
String “OK” “Error”, “No cal” or

“Error”

Note! The reference plane is reset to zero after calibration. Therefore, if a value other than zero is
required, ensure that it is set after calibration

8.3 Save measurement to memory

Internal DLL declaration:
Public Function SaveToMem(ByVal Para As Variant) As String

Typical Usage:
Used to stored measured data to memory.
<variable> = SaveToMem(<Para>)

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 21

Action:
This function is used to store measured values to memory. A single parameter is passed
as shown in the table below.

 Para Description

“S11” or “S21” Forward parameters
“S22” or “S12” Reverse parameters

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error” String “OK” “Error”

8.4 Apply memory Math

Internal DLL declaration:
Public Function AppMemMath(ByVal Para As Variant, ByVal Func As Variant) As String

Typical Usage:
Used to apply vector maths to current measured data.
<variable> = AppMemMath(<Para>, <Func>)

Action:
This function is used to apply vector maths to the current measurement only. The
parameters passed are described in the table below.

Parameter passed Description Values Comments
Para Measurement

parameter
“S11”, “S21”, “S12”
or “S22”

S22 and S12 are reverse
measurements that require
the mode to be set to
‘reverse’

Func Vector maths to
apply

“/”, “+”, “-”,
“Restore”

Division, addition and
subtraction. “Restore”
restores the measurement
data to that before any math
was applied.

Note! If this function needs to be called a second time before carrying out another
measurement, use the ‘Restore’ facility to restore the measurement data.

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error” String “OK” “Error”

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 22

8.5 Set System Impedance

Internal DLL declaration:
Public Function SetSysZo(ByVal SysZo As Integer, ByVal ExMatch As Variant) As
String

Action:
This function is used to set the system impedance Zo. The parameters passed as described
in the table below.

Parameter passed Description Values Comments
SysZo System impednace 10 to 200 Only real impedance values
ExMatch Flag indicating if

external impedance
matching networks
are being used

- If True, it is assumed external
components are performing the
impedance conversion. If False,
the software will perform
mathematical conversion from
50Ω to the requested value.

Note: If external impedance matching networks are being used, then a suitable
calibration kit should be used to calibrate. For example, to measure a 75Ω device, 75Ω to
50Ω matching pads could be used and calibration carried out using a 75Ω calibration kit.
If no impedance matching networks are used, it is assumed that calibration is carried out
using a 50Ω calibration kit. The software then mathematically converts the measurements
to 75Ω. Please refer to the users’ manual for further information. When applied, data
stored in memory is unaffected.

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error” String “OK” “Error”

8.6 Impedance Conversion Utility

Internal DLL declaration:
Public Function ZConversion (ByVal ZoOld As Variant, ByVal ZoNew As Variant,
ByVal A11R As Variant, A11I As Variant, A21R As Double, A21I As Variant, _
A12R As Variant, A12I As Variant, A22R As Double, A22I As Variant) As String

 Action:
This function is used to convert normalised S-parameters to a different impedance.
The parameters passed are described in the table below.

Parameter passed Description Values Comments
Zold Base impedance of

s-parameters to be
converted

10 to 200 Only real impedance values

ZoNew Base impedance of
converted s-
parameters

10 to 200 Only real impedance values

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 23

A11R, A11I Real and imaginary
parts of S11

- Normalised values

A21R, A21I Real and imaginary
parts of S21

- Normalised values

A12R, A12I Real and imaginary
parts of S12

- Normalised values

A22R, A22I Real and imaginary
parts of S22

- Normalised values

Note: The function requires that a full set of s-parameters is passed, i.e. a total of 8
terms representing the real and imaginary parts of each parameter. If a full set is not
available, then missing parameters must be given default values. Possible values for
any parameter not available are 10-6, j0.0. Please be aware that all s-parameters are
interrelated so in some circumstances this assumption may not yield best results.

Returns:

Return values Type Executed correctly Not executed correctly
<string value> or

“Error”
String “S11real, S11imag,

S21real, S21imag,
S12real, S12imag,
S22real, S22imag”

“Error”

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 24

9. Get Processed Data

9.1 Get data

Internal DLL declaration:
Public Function GetData(ByVal Para As Variant, ByVal MeasType As Variant, ByVal Pnt As
Variant) As String

Typical Usage:
Used to get measured data (one frequency point per call) in a specified format.
<variable> = GetData(<Para>, <MeasType>, <Pnt>)

Action:
This function is used to get measured data in a specified format. The parameters required
to be passed are shown in the table below.

Parameter passed Description Values Comments
Para Measurement

parameter
“S11”, “S21”,
“S12” or “S22”

S22 and S12 are reverse
measurements that require the mode
to be set to ‘reverse’

MeasType Required data
format

“real”, “imag”,
“logmag”,
“phase”, “swr”,
“gd”, “td”

The available formats are: real,
imaginary, log magnitude, phase,
standing wave ratio, group delay,
time domain

Pnt Frequency index <frequency
index>

A value between 1 and the number of
sweep points.

Returns:

Return values Type Executed correctly Not executed correctly
<string value> or

“Error”
String “<frequency (Hz)>,

<parameter value>”
“Error”

9.2 Get memory

Internal DLL declaration:
Public Function GetMem(ByVal Para As Variant, ByVal MeasType As Variant, ByVal Pnt As
Variant) As String

Typical Usage:
Used to get memory data (one frequency point per call) in a specified format.

<variable> = GetMem(<Para>, <MeasType>, <Pnt>)

Action:
This function is used to get measured data in a specified format. The parameters required
to be passed are shown in the table below.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 25

Parameter

passed
Description Values Comments

Para Measurement
parameter

“S11”, “S21”,
“S12” or “S22”

S22 and S12 are reverse measurements that
require the mode to be set to ‘reverse’

MeasType Required data
format

“real”, “imag”,
“logmag”, “phase”,
“swr”, “gd”, “td”

The available formats are: real, imaginary, log
magnitude, phase, standing wave ratio, group
delay, time domain

Pnt Frequency index <frequency index> A value between 1 and the number of sweep
points.

Returns:

Return values Type Executed correctly Not executed correctly
<string value> or

“Error”
String “<frequency (Hz)>,

<parameter value>”
“Error”

Note! Smoothing is not applied to returned memory data.

9.3 Find data point

Internal DLL declaration:
Public Function FndPt(ByVal Freq As Variant, ByVal Para As Variant, ByVal MeasType As
Variant, ByVal Func As Variant) As String

Typical Usage:
Gets data in a specified format. Includes facility for finding the peak or minimum value
and 3 or 6 dB bandwidth.

<variable> = FndPt(<freq>, <Para>, <MeasType>, <Func>)

Action:
This function is used to get measured data in a specified format. It can be
considered as a marker function. It is similar to the ‘GetData’ except that instead of
a frequency index, a frequency value (in MHz) is passed. In addition, a parameter
can be specified to find the peak or minimum value as well as the 3 or 6 dB
bandwidth points. Note that in both cases this will return the measurement points
nearest the requested points. The parameters required to be passed are shown in the
table below.

Parameter
passed

Description Values Comments

Freq Frequency in MHz <frequency> A value between 3 and 3080 (MHz).
Para Measurement

parameter
“S11”, “S21”, “S12” or
“S22”

S22 and S12 are reverse measurements that
require the mode to be set to ‘reverse’

MeasType Required data format “real”, “imag”, “logmag”,
“phase”, “swr”, “gd”, “td”

The available formats are: real, imaginary, log
magnitude, phase, standing wave ratio, group
delay, time domain

Func ‘Marker’ function
required

“normal”, “pk”, “min”, “-
3dB”, “-6dB”, “+3dB”,
“+6dB”

‘Normal’ returns the value at the specified
frequency. ‘pk’ and ‘min’ find the peak and
minimum values, respectively. The other
values specified a bandwidth, such as “-3dB”
refers to the -3 dB bandwidth.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 26

Returns:

Return values Type Executed correctly Not executed correctly
<string value> or

“Error”
String “<frequency (Hz)>, < (pk, min, etc)

value>, <bandwidth value>, <frequency
index>”

“Error”

Note! Frequency index is an integer representing the point in the sweep.

9.4 Set Pass / Fail Limits

Internal DLL declaration:
Public Function SetLimits(ByVal Segment As Integer, ByVal Para As String, ByVal
FreqLow As Variant, ByVal FreqHigh As Variant, ByVal Min As Variant, ByVal Max
As Variant) As String

Typical Usage:
Sets the minimum and maximum pass / fail limits. Up to 8 segments may be specified.

<variable> = SetLimits(<Segment>, <Para>, <FreqLow>, <FreqHigh>,
 <ValMin>,<ValMax>)

Action:
This function is used to set segments of the pass / fail limits. It is possible to specify
up to 8 segments for each measurement parameter (S11, S21, S12 or S22). The
parameters required to be passed are described in the table below.

Parameter
passed

Description Values Comments

Segment Segment identifier 1 to 8
Para Measurement

parameter
“S11”, “S21”, “S12” or
“S22”

S22 and S12 are reverse measurements that
require the mode to be set to ‘reverse’

FreqLow Start frequency of
segment in MHz

3 to 3080 or “?” or “Reset” The start frequency of the segment must lie
within the calibration frequency band. It must
be less than the stop frequency. If FreqLow is
set to a string = “?” then the set values of the
segment will be returned. Similarly, if it is set
to a string = “Reset” the segment is initialised.

FreqHigh Stop frequency of
segment in MHz

3 to 3080 The stop frequency of the segment must lie
within the calibration frequency band. It must
be greater than the start frequency.

ValMin Minimum value limit
of segment

-1E9 to 1E9

ValMax Maximum value limit
of segment

-1E9 to 1E9

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 27

Returns:

Return values Type Executed correctly Not executed correctly
<string value> or

“Error”
String “ OK” or if query, “<start freq (Hz)>, <

stop freq (Hz) >, <min value>, <max
value>”

“Error”

9.5 Pass / Fail Measurement

Internal DLL declaration:
Public Function TestLimits(ByVal Para As String, ByVal FreqLow As Variant,
ByVal FreqHigh As Variant, ByVal MeasType As Variant) As String

Typical Usage:
Compares current measurement against the set pass / fail limits. All 8 segments are
checked.

<variable> = TestLimits(<Para>, <FreqLow>, <FreqHigh>,< MeasType >)

Action:
This function is used to test against the pass / fail limits. The parameter (S11, S21,
S12 or S22) needs to be specified together with type of measurement. The
parameters required to be passed are described in the table below.

Parameter
passed

Description Values Comments

Para Measurement
parameter

“S11”, “S21”, “S12” or
“S22”

S22 and S12 are reverse measurements that
require the mode to be set to ‘reverse’

FreqLow Start frequency of
test band in MHz

3 to 3080 or 0 The start frequency of the test band in MHz. If
set to 0, then the current calibration’s entire
band is used to perform the pass / fail test.

FreqHigh Stop frequency of test
band in MHz

3 to 3080 The stop frequency of the test band in MHz.

MeasType Required data format “real”, “imag”, “logmag”,
“phase”, “swr”, “gd”, “td”

The available formats are: real, imaginary, log
magnitude, phase, standing wave ratio, group
delay, time domain

Returns:

Return values Type Executed correctly Not executed correctly
<string value> or

“Error”
String “ Pass” or if test fail, “<fail freq (Hz)>, <

“Max (or Min) limit =” ValMin (or
ValMax)>, <”Actual =”>, <Measured

value>”

“Error”

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 28

10. Get Info

10.1 Get instrument / cal information

Internal DLL declaration:
Public Function GetInfo(ByVal Para As Variant) As String

Typical Usage:
This function is used to get data related to the instrument status. A single parameter
is passed to the function as described in the table below.

<variable> = GetInfo(<Para >)

Para Description Valid return
'"AverSet" Number of averages set 1 to 255
"SmooSet" Smoothing set 0 to 10 (%)
"DwelSet" Dwell time set 0.9 or 9 (ms)
"CalType" Calibration type set “S11+S21”, “S11”, “S21”, “12 Term”
"CalPower" Signal power used during calibration -20 to 0 (dBm)
"CalAver" Averages used in calibration 1 to 255
"CalKit1" or
“Clakit2”

 Cal kit name loaded for port 1 or port 2 <cal kit name used>

”KitSex1” or
“KitSex2”

Port 1 or port 2 cal kit sex “Male” or “Female”

”KitC1” or
“KitC2”

Calkit cap coefficients for port 1 kit or
port 2 kit

<coefficient 0,coefficient 1, coefficient 2, coefficient 3>

”KitR1” or
“KitR2”

Port 1 or port 2 cal kt reference plane Reference plane of kit in meters and seconds

”KitL1” or
“KitL2”

Port 1 or port 2 cal kit load reflection
data flag

Returns 1 if data available or 0 if no data available
(considered perfect load)

”KitD1” or
“KitD2”

Port 1 or port 2 cal kit load reflection
data

Comma separated string as follows. <# points,
frequency (MHz), real part, imaginary part,…>

“Kit1T” Port 1 cal kit Thru data flag Returns 1 if data available or 0 if no data available
“Kit1TD” Port 1 cal kit Thru data (s-parameters) Comma separated string as follows. <# points,

frequency (MHz), S11r, S11i, S21r,
S21i,S12r,S12i,S22r,S22i

"Dem1" De-embedding network for port 1
loaded or not flag

Returns “Loaded” or “Not loaded” if network for port 1
has been loaded or not.

"Dem2"

De-embedding network (port 2) loaded
or not

Returns “Loaded” or “Not loaded” to indicate if de-
embedding network for port 2 has been loaded

"ApplyDem"

 Flag indicating if de-embedding is on or
off

Returns “On” or “Off” to indicate if de-embedding is
applied or not

"dcOff"

 dc Offset (reads internal dc offset) Returns “OK” if offset within factory limits or “Error”.
The dcOff must be called periodically to maintain
measurement accuracy.

"FreqPlan”

Queries the Frequency plan set Returns a comma separated string with the current
frequency plan. Frequency values returned are in Hz.
<start freq>, <stop freq>, <step freq>, <# of sweep
points>, <test level>.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 29

Para Description Valid return
“SysZo” Queries the system impedance set Returns a string <SysZo>
"ExMatch" Queries if external impedance matching

Returns a string, <1> if networks used otherwise <0>

"CFreqPlan”

Queries the Frequency plan used for
calibration

Returns a comma separated string with the frequency
plan used. Frequency values returned are in Hz.
<start freq>, <stop freq>, <step freq>, <# of sweep
points>, <test level>.

“Interpol” Queries if calibration being used is
interpolated from another

Returns “Yes” or “No”

"Model" Instrument model String. Typically “LA19-13-02”
"SN" Serial number String. Typically a four digit number.
"Temp" Instrument temperature String. <Temp deg C> or “0” if an error is encountered.
"Stat"

Instrument status String: “R”: Ready, “S”: Ready from power up, “E”:
Error

"ErrFlag" Read serial comms Error flag String. Typically “Error” or “OK”
"TDP"

Time domain parameters Returns a comma separated string with the following
data. “<Start Time>, <Stop Time>, <Step Time>,
<Termination type>,<Res value if applicable>,
<Window type>, <Window order (if applicable)>”

Note! The dc offset voltage dcOff must be read before any calibration is done.
Further, it is strongly advised that a call is made (GetInfo(“dcOff”)) every one or
two minutes interval to ensure optimum performance.

Returns:
According to the table above or “Error” if an error has been encountered.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 30

11. Data Storage

11.1 Save cal kit

Internal DLL declaration:
Public Function SaveKit(ByVal FileName As Variant, ByVal port As Integer) As String

Typical Usage:
This function is used to save the calibration kit on disk. The parameter passed is
described in the table below.

<variable> = SaveKit (<FileName>, <port>)

Parameter passed Description Values Comments

FileName
Port

File name
Port to which kit

applies

<path + file name>
‘1’ or ‘2’

The file name must include
the full path name

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “File Error” String “OK” “File Error”

Important: Through adaptor data is only loaded and saved when the kit is associated
with Port 1 of the instrument. A kit with Thru data may be loaded to Port 2 but the Thru
data will be ignored, therefore, if the kit is subsequently re-saved the Thru data will be
lost.

11.2 Save measurement

Internal DLL declaration:
Public Sub SelectSaveMeas()

Typical Usage:
This routine is called to save measured data. When called, a window is displayed that
allows the user to select the data and format to be saved as well as the destination file.

No parameters are passed or returned.

11.3 Save status and calibration

Note! Calibration and status files saved using the remote control DLL are not compatible
with those saved using the direct control user interface software.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 31

Internal DLL declaration:
Public Function SaveCal(ByVal FileName As Variant) As String

Typical Usage:
This function is used to save the current calibration and status. A single parameter is passed as
described in the table below.

<variable> = SaveCal(<FileName>)

Parameter passed Description Values Comments

FileName File name or “?” <path + file name>
or <”?”>

The file name must include the
full path name. If a “?” is passed,
a window is displayed to allow

the user to interactively save the
calibration and status.

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error

writing file”
String “OK” “Error writing file”

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 32

12. Data Retrieval

12.1 Load status and calibration

Internal DLL declaration:
Public Function LoadCal(ByVal FileName As Variant) As String

Typical Usage:
This function is used to load a calibration and status file. A single parameter is passed as
described in the table below.

<variable> = LoadCal(<FileName>)

Parameter passed Description Values Comments

FileName File name or “?” <path + file name>
or <”?”>

The file name must include the
full path name. If a “?” is passed,
a window is displayed to allow
the user to interactively load a

calibration and status file.

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error

reading file”
String “OK” “Error reading file”

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 33

13. Miscellaneous

13.1 Initialise all variables

Internal DLL declaration:
Public Function InitVar() as String

Warning! This subroutine resets the dc offset voltage. Therefore, the dc offset must
be read again (GetInfo(“dcOff”)) before any calibration or measurement is carried
out.

Typical Usage:
This function is called to initialise all internal variables.

<variable> = InitVar

Returns:

Return values Type Executed correctly Not executed correctly
“OK” String “OK” Not Applicable

13.2 Set to signal generator mode (display a dialogue form)

Internal DLL declaration:
Public Sub SelectSigGen()

Typical Usage:
This routine is called to display a window that allows the user to set the instrument up as
synthesised signal generator.

Call SelectSigGen
SelectSigGen

Returns:
No parameters are passed or returned.

13.3 Set to signal generator mode

Internal DLL declaration:
Public Function SetSigGen(ByVal Freq As Variant, ByVal P As Variant) As String

Typical Usage:
This function is used to set up the instrument as synthesised signal generator. The
parameters passed are described in the table below.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 34

<variable> = SetSigGen(<Freq>, <P>)

Parameter passed Description Values Comments

Freq Frequency in MHz <frequency> Must be within the range 3 to
3080

P Power in dBm <power> Must be within the range -20 to
0

Returns:

Return values Type Executed correctly Not executed correctly
“OK” or “Error” String “OK” “Error”

13.4 Get DLL program version

Internal DLL declaration:
Public Function DLLVer() As String

Typical Usage:
This function is used to query the DLL program version. No parameters are passed.

<variable> = DLLVer

Returns:

Return values Type Executed correctly Comments
<version> String <version> Example: "V1.0 June 2006"

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 35

14. Diagnostics

14.1 Run diagnostics tests (display form)

Internal DLL declaration:
Public Function InsDiag() As String

Typical Usage:
This function is used to display a window which allows the user to carry out instrument
diagnostics tests. No parameters are passed.

<variable> = InsDiag

Returns:

Return values Type Executed correctly Not executed (aborted)
<string> String "Tests completed" "Tests not performed"

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 36

15. Examples

The diagram below shows the steps to carry out a measurement. It is simplified and
incorporates the minimum number of steps to perform a measurement.

Find VNA
(FND)

Set calibration kit(s)
(SetKit or SelectKit)

Calibrate
(SlectCal or LoadCal or

SetFreqPlan + MeasCal + AppCal)
Set # averages
(SetEnhance)

Measure
(Measure)

Set operating
point

(SetRXQ)
Set enhancements

(SetEnhance)

Get data
(GetData)

Check dc
offset?

Measure offset
(GetInfo)

Yes

Optional – normally
not required

Measure
again?

No

END

Start

Note! Measure offset at 1 or 2
minute intervals after warm up.Yes

Find VNA
(FND)

Set calibration kit(s)
(SetKit or SelectKit)

Calibrate
(SlectCal or LoadCal or

SetFreqPlan + MeasCal + AppCal)
Set # averages
(SetEnhance)

Measure
(Measure)

Set operating
point

(SetRXQ)
Set enhancements

(SetEnhance)

Get data
(GetData)

Check dc
offset?

Measure offset
(GetInfo)

Yes

Optional – normally
not required

Measure
again?

No

END

Start

Note! Measure offset at 1 or 2
minute intervals after warm up.Yes

Figure 15.1: Simple measurement flow chart

In the following section some examples of code that make use of the ActiveX DLL are
provided. These illustrate the basic approach that can used to control the LA19-13-02
VNA.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 37

15.1 Visual Basic 6

A simple VB6 example (DLL_Test) is described below that makes use of the DLL library
to carry out a calibration, perform a measurement sweep, get measured data and display
data of a single measurement point.

Note! The dc offset voltage dcOff must be read before any calibration is done.
Further, it is strongly advised that a call is made (GetInfo(“dcOff”)) every one or
two minutes interval to ensure optimum performance.

15.1.1 Program Form

Figure 15.2: Form of simple example described

15.1.2 Loading the DLL library

Figure 15.3: Setting the reference to the DLL library (VNA_02)

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 38

15.1.3 Discovering the instrument and loading a calibration kit

The code shown below finds the instrument and returns the serial port to which it is
connected. It then proceeds to load calibration kit files. Note that the calibration kit file
names must include the full path. The code also gets the temperature if the instrument.

Figure 15.4: Example of code to discover the instrument and load calibration kits

15.1.4 Performing a calibration

The code below can be used to calibrate the VNA. Note that the function used (SelectCal)
is called with a “?” string argument. This causes a window to be displayed that allows the
user to perform a calibration. If instead, a valid full path calibration name of a valid
calibration file is passed, then the function will load the file instead. Note that calibration
files saved using the main user interface software are not compatible with this DLL
function.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 39

Figure 15.5: Example of code that may be used to perform a calibration

The GetInfo function is used to get information about the calibration performed. In the
example shown in Fig. 15.5, passing an argument of “FreqPlan” returns the frequency
plan, including the number of sweep points as a comma separated string. The various
parameters can be extracted using the VB ‘split’ command as shown. Note that the
GetInfo(“Interpol”) is used to check if the calibration being used is interpolated from
another. That is, if the user changed the frequency sweep parameters after performing a
calibration.

15.1.5 Performing a measurement

The code shown below can be used to perform a single sweep measurement. The
‘Measure’ function returns either an “OK” or “Error” string. In the example, this is
displayed in text box Text8.

Figure 15.6: Example of code that may be used to perform an S21 measurement

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 40

15.1.6 Getting measured data

In the example below, the function FndPt is used to get the measured value at a specified
frequency. The function returns a comma separated string. In the example shown, the first
term in the string is the nearest frequency to that requested and the second term is the
parameter (S21) value in log magnitude form. The second use of the function FndPt gets
the phase of S21.

Figure 15.7: Example of code that may be used to get measured S21 data

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 41

15.2 Agilent’s VEE

Three simple Agilent Vee examples are given that show the typical usage of ActiveX
components. The first is a calibration followed by an S-parameter measurement, the
second is a calibration followed by a Time Domain measurement, and the third shows
how to put the VNA into signal generator mode and communicate with an Agilent
spectrum analyser to display the signal. The first example is covered in some detail while
the other two are described very briefly, the files being best studied in Agilent Vee.

15.2.1 S-Parameter Example (VNASparmExample.vee)

The diagram below shows the overall view of the Vee program.

Figure 15.8: Overall diagram of S parameter measurement program

1. If it has not already been done during installation, the first thing that must be done

is to register the VNA Control DLL on the PC as described in Section 2 of this
document. (The VNA Control DLL is normally registered automatically during
installation of the VNA software. It should only need registering manually if an
update has been issued.)

2. Once the VNA Control DLL has been registered, Start Agilent Vee

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 42

3. From the tool bar select Devices ⇒ ActiveX automation references, and tick the
box for the VNA Control Library.

4. Declare the Variable name with which the VNA will be addressed by selecting a
Declare variable block. From the toolbar select Data ⇒ Variable ⇒ Declare
Variable.

5. Place the block in the main window and fill in the boxes.
 In this case we have chosen the name myvna
The scope is set to Local to Context
Type is set to Variant
Number of Dimensions is set to 0

Figure 15.9: Declare VNA variable

6. In a similar fashion a Variable to store the Result is declared

Figure 15.10: Declare Result variable

7. Next the variable myvna must be assigned to the VNA with a CreateObject

statement. From the toolbar select Device ⇒ Formula and place it in the main
window.
Delete the input terminal by right clicking on the input port and select Delete
Terminal ⇒ Input, select A and click OK
Delete the default formula and type:
 set myvna = CreateObject(“VNAControl2.VNA_02”);

Figure 15.11: Create VNA Object

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 43

8. Now the VNA can be controlled through the VNA function library using ActiveX
controls.
From the toolbar select Device ⇒ Object browser.
Under “Type” select ActiveX Objects
Under “Library” scroll down and select VNAControl
Under “Members” select the function you wish to call, in this case FND,
Click Create call and place the block on the main window
Inside the block replace VNA_02 with myvna so the call now says
myvna.FND();

Figure 15.12: Find VNA function

9. Add an Alphanumeric box to show the result by selecting from the toolbar
Display ⇒ Alphanumeric and place the block in the main window.
Connect the result output of the FND function to the Alphanumeric

10. If this simple program is run the number of the Com port to which the VNA is
attached will be returned in the alphanumeric block.

Further functions can be added to determine the state of the instrument or to tell it to
carry out measurement functions and read back the results.

11. Repeat the process in step 7 to make a call using the GetInfo function. Remember

to change VNA_02 to read myvna.
Add an alphanumeric block to display the result.
Add a text constant block, from the toolbar select Data ⇒ constant ⇒text, and
enter the parameter you wish to discover from the instrument, in this case SN
which will return the instrument’s serial number.
Similarly the GetInfo function can be repeated to determine the Model number.

Parameters can also be passed directly to the GetInfo function by typing the parameter
within the brackets of the function. If the parameter is a string parameter then the
parameter must be enclosed between inverted commas. For example to find the
temperature of the receiver create a GetInfo function call, delete the input terminal and
replace the word Para inside the brackets with “Temp”. (Remember to replace VNA_02
with myvna in the function call). The function should read: myvna.GetInfo(“Temp”);
This works in exactly the same way as if Temp had been passed from a text block.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 44

Figure 15.13: Diagram showing typical Vee function calls

12. Before making a measurement it is necessary to check the DC offset and calibrate
the instrument. Also during repeated measurements a DC offset check should be
carried out every few minutes.

13. Create a call to check the DC offset. From the toolbar select Device ⇒ Object

browser.
Select GetInfo and click on create call. Place the block in the main program.
Delete the data input terminal and replace Para in the function with “dcoff”. Place
an alphanumeric block for the result.

14. Create a call to do a calibration. From the toolbar select Device ⇒ Object
browser and select SelectCal.

15. Create a call to determine what type of calibration was performed as this
information will be used to determine what measurements are possible at a later
stage. From the toolbar select Device ⇒ Object browser. Select GetInfo and
click on create call. Place the block in the main program. Delete the data input
terminal and replace Para in the function with “CalType”. Place an alphanumeric
block for the result.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 45

Now we are ready to set up the measurement procedure. This sets the program in a
continuous loop so that measurements are made every time a button is pressed. To exit
the loop a second Exit button must be pressed.

16. From the toolbar select Flow ⇒ Repeat ⇒ Until Break. Place the block in the
program.

17. Create two Control buttons Data ⇒ Toggle control ⇒ Button
These buttons will be used to make a measurement or to exit. Name one “Exit”
and the other “Measure” by typing the names in the title section in the properties
box.
Add a reset terminal to each button by right clicking the button, ⇒ Add terminal
⇒Control input, select Reset and click OK

18. Create two conditional blocks. Select Flow ⇒ Conditional ⇒ If A= =B.
Delete the B input terminal and set the condition to A= =1

19. From the Flow menu create a stop block. Flow ⇒ Stop

20. Connect the blocks as shown below

Figure 15.14: Setting up loop for measurements

21. Create a Gate block to control the data flow. Gate blocks are used to ensure the
data is updated for each measurement. Select Flow ⇒ Gate and place the block in
the main window

22. Create a call to check the dc offset, which should be done before each
measurement.

23. Create calls to make a measurement and get the data for magnitude and phase.

24. Create a For Range and set it to loop from 1 to 101 in steps of 1 to match the
number of points used in the calibration.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 46

Figure 15.15: Completing the measurement loop

25. Once the measurement blocks have been placed and wired the results are

manipulated by various built-in Vee String commands before being displayed on
an x,y Plot

Figure 15.16: Processing and displaying the results

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 47

26. Finally the relevant control buttons and displays can be put into a panel to

produce a user-friendly interface, and notes can be added with a Note Pad block.

Figure 15.17: Placing the controls in a Panel to create a user interface

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 48

15.2.2 Time Domain example (VNATimeDomainExample.vee)

In a similar fashion a program can be assembled that makes a time domain calibration
then carries out a time domain measurement.

Figure 15.18: Overall diagram of Time Domain Example

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 49

The relevant buttons can be selected from the main program and placed on a panel to
produce a simple user interface.

Figure 15.19: User interface for Time domain example

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 50

15.2.3 Signal generator example (VNASigGenExample.vee)

The signal generator example describes how to use the VNA in the Signal Generator
mode.
The program gives an example of how to:

• Set the frequency an amplitude using the interactive form,
• Set the frequency and amplitude using text entry
• Communicate with an Agilent E4407B spectrum analyser
• Program the VNA to do a frequency sweep
• Program the VNA to do an amplitude sweep

Figure 15.20: Overall diagram of Signal Generator example

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 51

The relevant controls can be selected from the main program and placed in a panel to
make a user interface.

Figure 15.21: Diagram of Signal Generator example user interface

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 52

15.3 National Instruments LabVIEW
A simple example of how to get started and communicate with the instrument is
provided. The functions work in the same way as in Visual basic or Agilent Vee, it is
only the way one sets up the calls that differs so it may be useful to look at the Vee
examples even if LabView is being used.

15.3.1 LabVIEW example
This simple example shows how to set up ActiveX calls to control the instrument or to
receive information from the instrument.

Figure 15.22: LabView Block diagram

1. Start LabView and open a new VI

2. If the Block diagram window is not visible, make it visible by selecting Window
⇒ Block diagram

3. Right click in the block window and select Connectivity ⇒ ActiveX ⇒
Automation Open. Place it in the block window. Right click on the Automation
Open block and select ActiveX Class. In the Type library select VNA2 Control
library Version xx.x where xx.x is the version number. Click on
VNA_02(VNAControl2.VNA_02) and click OK. This generates an Automation
Refnum

4. Right Click on the Open Automation block and select ActiveX Palette ⇒ Invoke
Node. Place it in the block window. Right click on the block and select Select
Class ⇒ ActiveX ⇒ VNAControl2._VNA_02.
Left click on Method and choose the function you wish to use. In this case FND.

5. Wire the Refnum to the reference input.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 53

6. Right click on the output of FND and select Create ⇒ Indicator. An indicator
block of the correct type will be placed on the port.

Figure 15.23: View of initial blocks

7. In a similar fashion place a DLLVer call, add an indicator block and an Indicator

block on the output.

8. Add a GetInfo call. Right click on Para and select Create ⇒ Constant, a string
constant box will be generated. Type SN into the box.

9. Right click on GetInfo and select Create ⇒ Indicator and place the result block.
Rename the block Serial No

Figure 15.24: View of final blocks

10. Add another GetInfo block and this time type Model in the Para input box and
rename the output box Model.

11. Finally when all the function blocks have been placed a Close Reference block
must be added. Right click in the block window and select Connectivity ⇒
ActiveX⇒ Close Reference. Wire the Refnum to the reference port of the Close
Reference. Also wire the error out’s to the error in’s if required.

DW96667 Iss.2.0 VNA programming Mar07 Page of 54 54

12. Move to the Front Panel window and arrange the Indicator blocks to suit.

13. Run the program. After a short wait the Port number, DLL version, model number
and serial number should be returned in the appropriate box.

Figure 15.25: View of Front Panel with results

	Introduction
	Availability and Installation
	RS232 Interface
	Command Summary
	Communications
	Discover instrument
	Reset serial communications error flag

	Calibration
	Create kit (displays a dialogue form)
	Create kit
	Set frequency plan
	Calibrate and set frequency plan �(displays a dialogue form)
	Calibrate (measure calibration standard)
	Apply calibration
	P1dB Calibration and Measurement �(display a dialogue form)
	AM-PM Calibration and Measurement�(displays a dialogue form)
	P1dB Calibration
	AM-PM Calibration
	Set quiescent point of Receiver

	Measurements
	Measure one sweep (S11, S21, S11+S21, or ‘All’ using curren
	Measure P1dB
	Measure AM-PM

	Signal Processing
	Set enhancement parameters
	Set Reference Plane
	Save measurement to memory
	Apply memory Math
	Set System Impedance
	Impedance Conversion Utility

	Get Processed Data
	Get data
	Get memory
	Find data point
	Set Pass / Fail Limits
	Pass / Fail Measurement

	Get Info
	Get instrument / cal information

	Data Storage
	Save cal kit
	Save measurement
	Save status and calibration

	Data Retrieval
	Load status and calibration

	Miscellaneous
	Initialise all variables
	Set to signal generator mode (display a dialogue form)
	Set to signal generator mode
	Get DLL program version

	Diagnostics
	Run diagnostics tests (display form)

	Examples
	Visual Basic 6
	Program Form
	Loading the DLL library
	Discovering the instrument and loading a calibration kit
	Performing a calibration
	Performing a measurement
	Getting measured data

	Agilent’s VEE
	S-Parameter Example (VNASparmExample.vee)
	Time Domain example (VNATimeDomainExample.vee)
	Signal generator example (VNASigGenExample.vee)

	National Instruments LabVIEW
	LabVIEW example

